Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity.

نویسندگان

  • Jun Yan
  • Jeongdae Im
  • Yi Yang
  • Frank E Löffler
چکیده

Dehalococcoides mccartyi strains are corrinoid-auxotrophic Bacteria and axenic cultures that require vitamin B12 (CN-Cbl) to conserve energy via organohalide respiration. Cultures of D. mccartyi strains BAV1, GT and FL2 grown with limiting amounts of 1 µg l(-1) CN-Cbl quickly depleted CN-Cbl, and reductive dechlorination of polychlorinated ethenes was incomplete leading to vinyl chloride (VC) accumulation. In contrast, the same cultures amended with 25 µg l(-1) CN-Cbl exhibited up to 2.3-fold higher dechlorination rates, 2.8-9.1-fold increased growth yields, and completely consumed growth-supporting chlorinated ethenes. To explore whether known cobamide-producing microbes supply Dehalococcoides with the required corrinoid cofactor, co-culture experiments were performed with the methanogen Methanosarcina barkeri strain Fusaro and two acetogens, Sporomusa ovata and Sporomusa sp. strain KB-1, as Dehalococcoides partner populations. During growth with H2/CO2, M. barkeri axenic cultures produced 4.2 ± 0.1 µg l(-1) extracellular cobamide (factor III), whereas the Sporomusa cultures produced phenolyl- and p-cresolyl-cobamides. Neither factor III nor the phenolic cobamides supported Dehalococcoides reductive dechlorination activity suggesting that M. barkeri and the Sporomusa sp. cannot fulfil Dehalococcoides' nutritional requirements. Dehalococcoides dechlorination activity and growth occurred in M. barkeri and Sporomusa sp. co-cultures amended with 10 µM 5',6'-dimethylbenzimidazole (DMB), indicating that a cobalamin is a preferred corrinoid cofactor of strains BAV1, GT and FL2 when grown with chlorinated ethenes as electron acceptors. Even though the methanogen and acetogen populations tested did not produce cobalamin, the addition of DMB enabled guided biosynthesis and generated a cobalamin that supported Dehalococcoides' activity and growth. Guided cobalamin biosynthesis may offer opportunities to sustain and enhance Dehalococcoides activity in contaminated subsurface environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia.

Corrinoids are essential cofactors of reductive dehalogenases in Dehalococcoides mccartyi, an important bacterium in bioremediation, yet sequenced D. mccartyi strains do not possess the complete pathway for de novo corrinoid biosynthesis. Pelosinus sp. and Desulfovibrio sp. have been detected in dechlorinating communities enriched from contaminated groundwater without exogenous cobalamin corrin...

متن کامل

Selective Enrichment Yields Robust Ethene-Producing Dechlorinating Cultures from Microcosms Stalled at cis-Dichloroethene

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlori...

متن کامل

Complete Genome Sequence of Dehalococcoides mccartyi Strain WBC-2, Capable of Anaerobic Reductive Dechlorination of Vinyl Chloride

Dehalococcoides mccartyi strain WBC-2 dechlorinates carcinogen vinyl chloride to ethene in the West Branch Canal Creek (WBC-2) microbial consortium used for bioaugmentation. We assembled and closed the complete genome sequence of this prokaryote using metagenomic sequencing from an enrichment culture.

متن کامل

Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis.

Dehalococcoides mccartyi strains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel ...

متن کامل

Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community.

The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 368 1616  شماره 

صفحات  -

تاریخ انتشار 2013